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Magnetic twisting cytometry probes mechanical properties of
an adherent cell by applying a torque to a magnetic bead that is
tightly bound to the cell surface. Here we have used a three-
dimensional finite element model of cell deformation to compute
the relationships between the applied torque and resulting bead
rotation and lateral bead translation. From the analysis, we
computed two coefficients that allow the cell elastic modulus to
be estimated from measurements of either bead rotation or
lateral bead translation, respectively, if the degree of bead
embedding and the cell height are known. Although computed
strains in proximity of the bead can be large, the relationships
between applied torque and bead rotation or translation remain
virtually linear up to bead rotations of 15°, above which geo-
metrical nonlinearities become significant. This appreciable lin-
ear range stands in contrast to the intrinsically nonlinear force-
displacement relationship that is observed when cells are
indented during atomic force microscopy. Finally, these compu-
tations support the idea that adhesive forces are sufficient to
keep the bead firmly attached to the cell surface throughout the
range of working torques.
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CELL DEFORMABILITY PLAYS AN important role in a variety
of cell functions, including contraction, spreading,
crawling, and wound healing (4–6, 13). To measure cell
deformability and its changes, our laboratory has made
extensive use of magnetic twisting cytometry (5, 6, 14,
15, 20, 22, 23, 29, 35, 37–39). Magnetic twisting cytom-
etry probes mechanical properties of an adherent cell
by applying a torque to a magnetic bead that is tightly
bound to the cell surface. Most studies that use this
method have reported the relationship between the
applied torque and resulting angular rotations. More
recent studies have reported the relationship between
the applied torque and resulting lateral bead displace-
ments (10, 11). With either approach, data analysis
reported thus far has emphasized relative changes in

cell stiffness, or an “apparent stiffness,” rather than
the absolute elastic modulus.

In this report, we have used three-dimensional finite
element models to compute the relationships between
the applied torque and resulting cell deformation, bead
rotation, and lateral bead translation. We have as-
sessed the effects of different degrees of bead embed-
ding and cell height within a geometrically linear
range of cell deformation. From these relationships,
the elastic modulus of the cell can be computed if the
bead-cell geometry is known. Assuming a linear elastic
material and using geometrically nonlinear finite ele-
ment analysis, we also assessed the limit up to which
the linear analysis can be used.

METHODS

Finite Element Model, Boundary Conditions, and
Model Parameters

Geometry. The cell was modeled as a three-dimensional
slab with locally constant height and a lateral extent of 50
bead diameters (Fig. 1B). Justification for the assumption of
a locally constant cell height is addressed in the DISCUSSION.
We also considered a spherical bead embedded in an infinite
elastic space that could be compared with an exact analytic
solution (28).

Finite element formulation. The finite element program
PAK (17, 19) was used to calculate the rotation and displace-
ment of a rigid sphere partially or completely embedded in
the deformable continuum (cell). The deformable continuum is
defined as elastic solid of finite or semi-infinite thickness, with
the bottom surface fixed to the rigid surface. For a torque
applied along the x-axis (Fig. 1A), we calculated displacements,
strains, and stresses within the material (i.e., cell) and also the
bead translation and rotation. We assumed no slipping between
the bead surface and the cell body at the interface.

The essence of the finite element method consists of divi-
sion of a continuum into subdomains, called finite elements,
in which an approximate displacement field u is defined as

u � �
k

hkUk (1)

where hk is the interpolation function (polynomial) and Uk is
the displacement vector of the kth finite element nodal point
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(1). For given material constitutive relations, the global finite
element equilibrium equations are obtained by assembling
the individual finite element equilibrium equations for all
elements within the discretized domain. The properly defined
boundary conditions must also be included in the finite ele-
ment model. First, the system of equations is solved for nodal
displacements, and then displacements of the material points
within each finite element are calculated from Eq. 1. The
strains are obtained by the appropriate differentiations of the
displacement field, whereas the stresses are calculated from
these strains and the material constitutive relations.

We assumed that bead stiffness is much larger than cell
stiffness, in which case, considering bead as a rigid body, the
bead motion is defined by displacement of its center and its
rotation. We impose the condition that displacements at the
interface between the rigid bead (ubead) and the deformable
cell (ucell) are the same

ubead � ucell (2)

The torque applied to the bead is balanced by tractions at the
bead-cell interface. These tractions are calculated from nodal
forces at the cell-bead interface (2, 21).

In the finite element analysis, we used three-dimensional,
solid, isoparametric, linear eight-node elements. Typically,
the total number of nodes was �4,500 with �15,000 ele-
ments.

We performed two analyses; in both we assumed that the
material was linearly elastic. The first analysis was geomet-
rically linear in the sense that it did not take into account

geometrical distortions induced by bead motion. The second
analysis was geometrically nonlinear in that it did take into
account such distortions. To do this latter analysis, we in-
cluded quadratic terms in the strain calculations and change
of geometry. Thus the Cauchy (true) stresses were related to
the Almansi strains in the linear constitutive law.

We used a Poisson ratio, v � 0.49, a value that does not
cause pressure locking of the elements. We also performed
calculations with v � 0.45 and 0.499 and found only minor
changes in sphere rotation and displacement (differences of
�0.5%). The stress field corresponding to v � 0.49 was
altered by only a few percent in the case when v was equal to
0.45. Thus our calculations with v � 0.49 are reasonably
accurate.

The finite element mesh. We point out that the stress
everywhere on the bead-cell interface is expected to be
bounded. This result is nontrivial, biologically important,
and impacts the question of what is a sufficiently fine mesh
for reasonable finite element approximations. The stress is
bounded, even at the extremes of the bead-cell interface,
because the sphere acts on the deformable cell as a rigid body
without sharp edges (24). This is in contrast to the case of a
rigid punch with sharp edges, which causes infinite stresses
in elastic deformable solid in the proximity of the punch
edges.

In the case of a bead embedded by only 10% of its diameter,
we performed calculations with two meshes, one of which had
50% more elements than the other. In regions of maximum
stress, we found differences approaching �2.5%, with much

Fig. 1. Cell deformation and bead movement imposed
by the magnetic twisting moment. A: schematic of os-
cillatory magnetic twisting cytometry. A homogeneous
magnetic twisting field (acting in the vertical direction)
causes the bead to rotate and to displace. Tm, applied
magnetic torque; h, cell height. Magnetic twisting cy-
tometry measures the angular rotation of the beads (�)
by detecting the horizontal component of the bead’s
remanent field (20, 36). Optical magnetic twisting cy-
tometry measures bead lateral translation (d) by using
a phase-synchronized video camera (10, 11). x, y, z: x-,
y-, and z-axes. B: cell deformation predicted by the finite
element model of 10% embedded bead. Before applica-
tion of the magnetic twisting moment, the cell is unde-
formed (blue in the background). After application of
magnetic field, cell deforms and bead simultaneously
rotate (for angle �) and laterally translate (for displace-
ment d). Small vertical translation is not relevant to
our study. The applied torque is at the limit of linear
torque-rotation range of 15°. Note large deformations at
the edge of the bead-cell interface, which sharply de-
crease toward the middle of the cell-bead interface.
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smaller discrepancies elsewhere. The corresponding differ-
ences in computed bead displacements and rotations were
�0.1%. Thus the use of the finer mesh was not necessary.

The dependency of the results on the mesh size in the
regions of high deformations is important, however, in anal-
ysis of geometrical nonlinearities. We observed negative Ja-
cobians (i.e., the determinant of the transformation matrix
between Cartesian and isoparametric coordinates) in a few of
the most distorted elements when bead rotation exceeded
15°. An extreme case, in which Jacobians are still positive but
small, is shown in Fig. 1B. The contribution of these distorted
elements to the overall response was negligible, however. In
the linear analysis, the Jacobians remained constant and are
independent of the element distortion; in that case, we lim-
ited our calculations to specific torques (Ts) that were 25%
smaller than those used in the nonlinear analysis. Numerical
computations for the case of a bead embedded in an infinite
medium (Fig. 2A) agreed within 0.5% with the corresponding
analytic solution of Phan-Thien (28).

Parameter values. The diameter of the ferromagnetic bead
was taken as 4.5 �m. The elastic material parameters of the
deformable continuum (i.e., the cell) were taken as shear mod-
ulus (G) � 1,000 Pa and v � 0.49; the G is related to the Young’s

modulus (E) by the relationship G � E/[2(1 � v)]. We studied
beads embedded to a depth of 5, 10, 25, 75, and 100% of the bead
diameter, and cell heights of 1 and 5 �m and semi-infinite.

Two different definitions for Ts have been used in the
literature, and they differ by geometric scaling factor (6 for
spherical beads) (10, 11, 20, 36, 38). Here we follow Fabry et
al. (10, 11) by defining Ts as applied magnetic torque (Tm) per
unit of bead volume. For the linear finite element analysis,
the Ts acting on the bead is taken to be Ts � 60 Pa.

Calculation of Apparent Cell Stiffness from Measured
Rotation or Lateral Translation

The magnetic twisting field (i.e., the applied magnetic
moment) causes both a rotation and a lateral translation of
the beads (Fig. 1). The bead rotation is �, and the normalized
lateral translation is d* � d/R [i.e., the bead lateral transla-
tion, d, expressed as a fraction of the bead radius (R)]. We
define apparent cell stiffness as G� � Ts/(��) obtained from
the bead rotation, or apparent cell stiffness as Gd � Ts/(�d*)
from the bead lateral translation. Here � is a shape factor (6
for spherical beads). We will show below that G� and Gd

Fig. 2. Deformed shapes of cell subjected to magnetic twisting torque and the corresponding equivalent (von Mises)
stress fields for the representative cases of the embedded bead in the cell or attached on the cell surface. The stress
shown is in Pa. Von Mises stress is defined as 	� � 
3/2 Sij �Sij, where Sij � 	ij � 1⁄3	kk�ij; i, j � 1, 2, 3 are components
of stress deviator; and 	ij are stress components in Cartesian system xi (i.e., x, y, z). Stress is shown in the plane
passing through the bead center. A: bead embedded in an infinite medium. Cell surface behind the plane is shown
within the white circle. B: bead 50% embedded in 5-�m-high cell. C: bead 10% embedded in 1-�m-high cell. D: bead
10% embedded in 5-�m-high cell.
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strongly depend on the degree of bead internalization and to
a lesser degree on the cell height.

We calculated the relationship between the cell G and the
apparent stiffnesses G� and Gd from torque-rotation and
torque-displacement dependencies obtained in our analysis.
We defined coefficients  and � by the relationships G� � G
and Gd � �G and then computed  and � each as a function
of the depth of bead embedding and cell height.

RESULTS

Deformation, Stress, and Traction

Cell deformation and the stress fields in the plane
perpendicular to the magnetic torque passing through
the center of the bead are shown for four representa-
tive cases (Fig. 2). In all cases, the bead is taken out of
the view, but the stresses at the cell-bead interface are
shown. We show the equivalent (von Mises) stress (1),
which is the overall measure of maximum shear stress.
The simplest case is rotation about the x-axis of a bead
in an infinite medium (Fig. 2A). In this case, there is no
bead translation: the strain and stress fields and the
interfacial tractions are uniform along the circumfer-
ence in the plane perpendicular to the Tm. Stress de-
cays rapidly in the radial direction (i.e., �R/r3), from
the maximum value at cell-microbead interface to
�15% of that value at the radial distance of �2 �m
from the microbead surface. Stress at the bead-cell
interface (shown inside the white circle in Fig. 2A)
decays to zero at the central point that lies on the
spherical surface and the center of the axis of rotation.
The maximum value of the interfacial traction is in the
plane passing through the center of the bead; for a bead
twisted by a Ts of 60 Pa, the traction is equal to 30 Pa.

In contrast to the case of a bead in an infinite space,
for a bead 50% embedded in a cell 5 �m in height (Fig.
2B), the stress distribution is highly nonuniform
around the bead interface and is maximal near the
intersection of the bead and the free apical surface of
the cell. This stress nonuniformity is far more promi-
nent when the bead is only 10% embedded (Fig. 2, C
and D, for two different cell heights). For 50% embed-
ding, the peak stress is about two times larger than
that of the bead immerged in an infinite medium,
whereas for 10% embedding, the peak stress is �25
times larger. Moreover, reduction of cell height from 5
to 1 �m (Fig. 2, C and D) further increases the peak
stresses by �20%. The maximum stress is at the bead
surface and coincides with maximum traction at the
cell-bead interface. The maximum tractions also in-
crease rapidly for less embedded beads. For example,
for 10% embedding, the maximum traction is �2.5 kPa
(Fig. 3). The effect of these local peak stresses and peak
tractions at the bead-cell interface is discussed below.

Cell Shear Modulus

Figure 4A shows the relationship between the coef-
ficient  and the degree of bead embedding for three
different cell heights. With less bead embedding,  is
much smaller than 1. For example, for 10% embedding,

G� is only 5% of G (Fig. 4A), but  increases toward
unity as bead embedding increases. A decrease of the
cell height below one-half of the microbead diameter at
fixed bead embedding increases  more significantly,
because the smaller bead rotation is caused by greatly
reduced cell deformation in proximity of the rigid sub-
strate.

Figure 4B shows the relationship between the coef-
ficient � and the degree of bead embedding for three
different cell heights. Interestingly, the values of � are
only slightly larger than  for the small degrees of bead
embedding, but they become progressively larger than
 as bead embedding increases. For a large degree of
embedding (�70%), � becomes much larger than 1 and
unbounded for the bead embedded in an infinite me-
dium, whereas  never exceeds 1. These differences in
 vs. � for the same degree of microbead embedding
follows from the fact that, for the completely immerged
microbead, the rotation remains finite, whereas the
lateral displacement approaches zero.

The coefficients  and � decrease progressively when
the cell height decreases below one bead diameter but
change relatively little when the cell height is larger
than one bead diameter (Fig. 4).

Nonlinearity

Partially embedded beads show stress concentra-
tions and associated large local deformations (Fig. 2, C
and D). For example, the maximum strain for 10%
embedded bead may reach 30% at Ts � 60 Pa and up to
50% at Ts � 80 Pa (Fig. 5). These maximum strain
values are much larger than the usual small deforma-
tion limit of 4% (1, 18). Moreover, these large deforma-

Fig. 3. Normal and tangential tractions along bead-cell interface in
the plane passing through the bead center, for 10% embedded bead,
h of 5 �m (as shown in Fig. 2D), applied specific torque of 60 Pa and
cell shear modulus of 1,000 Pa. In this case, � is �11.5°.

1432 ELASTIC MODULI OF ADHERENT CELLS

J Appl Physiol • VOL 93 • OCTOBER 2002 • www.jap.org



tions create geometrical nonlinearities. To our sur-
prise, the nonlinear analysis (performed for 10%
embedded bead) showed that the relationship between
the Ts and the bead rotation and/or bead displacements
is insensitive to these local geometrical nonlinearities
and remains virtually linear up to a rotation angle � �
15°. For � � 15°, geometrical nonlinearities became
significant.

DISCUSSION

Magnetic twisting cytometry probes mechanical
properties of an adherent cell by applying a torque to a
magnetic microbead that is tightly bound to the cell
surface. Here we computed coefficients  and � that
allow the cell elastic modulus to be estimated from
measurements of either bead rotation or lateral bead
translation, respectively, if the applied torque, the de-

gree of bead embedding, and the cell height are known.
In the DISCUSSION, we deal first with three important
limitations of the computational model and then go on
to discuss the implication of our results.

First, this theoretical analysis of cell deformation is
based on a highly simplified geometry of a spherical
bead partially embedded in a homogeneous isotropic
linear elastic slab whose height is locally uniform. Real
cell geometry is, of course, far more complex (40), with
cell height varying along and across the adherent cell.
The analysis shows, however, that fields of stress and
strain induced by the imposed torque decay rapidly in
the radial direction, varying roughly as the inverse
cube of distance from the bead; within one bead diam-
eter, the stress and strain become quite small (Figs. 2
and 5). This highly localized response implies that
geometrical details at lateral distances of more than
one bead diameter would be expected to have at most
only a slight influence on the computed results. There-
fore, the analysis would be expected to be valid for
regions in which changes of cell height are small over
distances comparable to one bead diameter.

Second, to perform these calculations, we used only
one value for the G, a realistic one, but the results are
applicable, nonetheless, for any value of the G. In the
linear case, the assumed value of the G acts merely as
a simple scale factor, setting the level of the stress field
relative to that of the strain field. For a fixed applied
torque, the stresses and tractions depend on the par-
ticular numerical value of the modulus. Note that spa-
tial distribution of strains depends neither on the ap-
plied torque nor on the modulus. Much the same is true
in the case of induced nonlinear distortions: the angu-
lar rotations required to induce a geometric nonlinear-
ity would be unchanged, but the level of the torque
required to induce that rotation would change.

Third, the computational analysis reported here was
limited to static conditions and does not explicitly take
into account dynamic properties of the cytoskeletal
lattice, which could cause both frequency dependence
of the elastic modulus and an appreciable loss modulus
corresponding to internal frictional stresses (10).
Before, we defined G� � G and Gd � �G, and now we
define the complex moduli G̃�(f), G̃d(f), and G̃(f), where
f is the frequency of the excitation. These moduli de-
note complex variables possessing real (in-phase or
elastic) components and imaginary (out-of-phase or
frictional) components. Assuming that the cytoskeletal
material is linear and incompressible, the computed
results can be generalized such that G̃�(f) � G̃�(f) and
G̃d(f) � �G̃d(f). The coefficients  and � are indepen-
dent of frequency, and they are identical to the coeffi-
cients shown in Fig. 4. It can be shown that these
coefficients equally apply to the cell constitutive law
that obeys linear structural damping (8–10, 12) or
linear viscoelasticity. The analysis should not be ex-
pected to extend to the case of plastic responses, how-
ever.

The key relationships for coefficients  and � are
shown in Fig. 4. These relationships are counterintui-

Fig. 4. Computed coefficients  and � (see METHODS for definitions),
as functions of the degree of bead embedding and h. A: coefficient 
(related to �) vs. degree of bead embedding and h. In this case, the
sphere embedded in infinite elastic medium  � 1, i.e., apparent cell
shear stiffness (G�), is equal to cell elastic shear modulus (G). B:
coefficient � (related to bead translation d* � d/R, where R is bead
radius) vs. degree of bead embedding and h.
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tive in an important regard that deserves special com-
ment. The results shown in Fig. 4 are surprisingly
insensitive to cell height. For example, the results for
infinite cell height vs. those for 5-�m cell height show
only negligible differences for a small extent of bead
embedding and, at most, only modest differences for
100% bead embedding. In the latter case (100% embed-
ding of a 4.5-�m bead in a 5-�m thick slab), there is a
rigid substrate with a no-slip boundary condition only
0.5 �m below the bead. It might have been thought
that such close proximity of the rigid substrate would
severely constrain bead motion and to an extent that is
far greater than the analysis actually predicts. The
analysis shows, however, that the dominant parts of
the normal and tangential tractions that balance the
torque applied to the bead are generated well away
from the regions that most closely approach the rigid
substrate (Fig. 3), thus resolving the paradox. How-
ever, the effect of the proximity of the rigid substrate
becomes important when cell height is below one-half
of bead diameter.

The coefficients  and � (Fig. 4) allow calculation of
the cell elastic modulus from either torque-angle or
torque-displacement measurements. The elastic mod-
ulus obtained in that way is comparable to the modulus
obtained by other techniques. For example, the appar-
ent cell stiffness of 60–100 Pa observed in smooth
muscle cells (20) divided by the coefficient  � 0.1 (that
corresponds to average bead embedding of 20%) gives a
cell G in the range of 600–1,000 Pa, which is compa-
rable to measurements of the G of fibroblasts by mi-
cropipette manipulation (34) and cell poking (27). A
similar value of the G is observed in myocytes obtained
by atomic force microscopy (32). Similarly, an apparent
shear cell stiffness of endothelial cells of �10 Pa (38)
divided by the same coefficient (0.1) becomes close to
the G obtained from the micropipette aspiration mea-
surements of �100 Pa (30, 31).

The analysis shows that the degree of bead embed-
ding and the cell height profoundly influence bead
rotation and translation. Therefore, observed varia-
tions of bead embedding, cell height variation with

Fig. 5. Deformed shapes and strain fields in a cell 5 �m in height for bead embedded 10% of its diameter and � of
15°. Shown are strain fields of the components of strain: �zz (A), �yy (B), �yz (C), and the effective strain �eff (D). The
effective strain is defined as: �eff � 
2⁄3�ij ��ij, where �ij are strain components in Cartesian system xi (i.e., x, y, z).
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position of the bead on each cell (i.e., close to nucleus,
where the smooth muscle cell height is �5 �m, and at
the cell periphery where the cell height of the well-
spread cell is �2 �m), may be the major factors con-
tributing to the variability of the apparent stiffnesses
calculated from the observed displacements of the in-
dividual bead displacements (10, 11). However, this
variability can also be caused, at least in part, by
differences in bead attachments to the cytoskeleton, by
local stiffness differences within a cell, or differences
between cells (different levels of activation, for exam-
ple) that collectively contribute to the observed hetero-
geneity of apparent stiffness.

Our analysis gives a basis for an estimation of the
range of linearity of the torque-rotation relationship
over a wide range of bead embedding. In continuum
mechanics of linear elastic solids, large deformations
usually induce significant nonlinearity in the stress-
strain relation for strains �4% (1, 18). Note that a
strain of 4% corresponds to a bead rotation in an
infinite medium of only 1.5°. Surprisingly, we found
that, in the case of 10% embedding, the torque-rotation
relationship remains linear up to a bead rotation of 15°
or lateral translation of 20% of the bead radius, which,
for a radius of 2.25 �m, yields a lateral translation of
�450 nm. This finding is consistent with experimen-
tally observed linear rheological behavior among
smooth muscle cells (10, 11). Although the maximum
local strains approach 50%, which greatly exceeds the
ordinary linearity limit of 4%, the region of these large
strains is quite localized to the edges of the cell-bead
interface (Fig. 5), and, as such, the overall system
response remains virtually linear. With an increase of
degree of bead embedding, these regions of large
strains are less localized, and the linear torque-rota-
tion limit must be gradually decreased (from bead
rotation of 15° at 10% embedding to bead rotation of
1.5° in an infinite medium), regardless of a large de-
crease in the peak strains and stresses (Fig. 2). Despite
this decrease of the linear limit, the maximum bead
rotation of 15° is a sufficient criterion to ensure that a
population of beads embedded �10% is within the
linear torque-rotation range.

The existence of an appreciable linear range using
this method stands in contrast to the force-displace-
ment relationship measured with atomic force micros-
copy, which exhibits no linear range due to intrinsic
geometric distortions induced by contact of the probe
tip with the cell (7).

It is important to note that the bead lateral trans-
lations become extremely small for large-bead em-
bedding (Fig. 6). For example, in the limit of the reso-
lution of optical readings of �5 nm (10, 11), the
displacement (of 4.5-�m bead) can be accurately mea-
sured for beads embedded �75%. Moreover, determi-
nation of dynamic moduli from torque-displacement
loops may further be limited by the optical resolution
to beads embedded �50%.

Finally, in the literature, the interpretation of data
obtained by magnetic twisting cytometry has rested on

the assumption that receptor-ligand bonds have suffi-
cient adhesion strength and numbers to keep the bead
attached to the cell over the whole interface and ensure
a no-slip boundary condition. Based on the tractions
computed here, is that a reasonable assumption? Typ-
ical receptor-ligand bond strength is 10 pN, and a
typical receptor-ligand bond density has a range from
several hundred up to 10,000 bonds/�m2 (3, 16, 25, 26,
41, 42). To support induced translation due to bead
twisting, the minimum receptor density for the com-
pletely embedded bead (Fig. 2A) is only 3 bonds/�m2,
whereas, for a bead emerged 10%, the minimum re-
quired bond density may reach �250 bonds/�m2.
Therefore, the ligand adhesion strength may be suffi-
cient to keep the bead firmly attached to the cell and
the cell to the substrate. Consequently, peeling of the
bead from cell surface or the cell from substrate would
not be expected to occur (10, 11, 20).

Conclusions

We have shown that the elastic modulus can be
obtained from the apparent cell stiffness if the degree
of bead embedding and cell height is known. The elas-
tic modulus estimated in this way is consistent with
estimates of the elastic modulus assessed by other
techniques in muscle and nonmuscle cells (20, 33, 43).
We have calculated the limiting maximum angle of
rotation in terms of the degree of the bead embedding,
for which the torque-angle of rotation and torque-dis-
placement relationships are linear. Finally, based on
estimated bond densities and maximum Ts values that
are used in these techniques, we found that the adhe-
sion strength of integrin bonds seems to be sufficient to
keep the bead firmly attached to the cell.

Fig. 6. Relationship between � vs. d normalized by R for various
degrees of the bead embedding and adherent h.
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